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Abstract

We introduce simplex free adaptive tree numerical methods for solving static and time-dependent Hamilton–Jacobi
equations arising in level set problems in arbitrary dimension. The data structure upon which our method is built in a gen-
eralized n-dimensional binary tree, but it does not require the complicated splitting of cubes into simplices (aka generalized
n-dimensional triangles or hypertetrahedrons) that current tree-based methods require. It has enough simplicity that minor
variants of standard numerical Hamiltonians developed for uniform grids can be applied, yielding consistent, monotone,
convergent schemes. Combined with the fast sweeping strategy, the resulting tree-based methods are highly efficient and
accurate. Thus, without changing more than a few lines of code when changing dimension, we have obtained results
for calculations in up to n = 7 dimensions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we present a simplex free adaptive tree numerical method for solving static and time-depen-
dent Hamilton–Jacobi partial differential equations (H–J PDEs) arising in level set problems in arbitrary
dimension. The method�s adaptivity increases resolution near the interface being studied, and simplifies
previous successful tree-based implementations, allowing for its extension to arbitrary dimension without
an increase in the complexity of function reconstruction, which is a necessary part of finding spatial derivatives
needed in solving the PDEs.

Applications in higher dimensions requiring adaptive meshes to resolve fine details arise in numerous fields.
In [23,14,8,30] multi-valued solutions to H–J equations were found by replacing a single-valued solution with
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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the level set (or intersection of level sets) of a higher-dimensional function. This idea was also used in [5,7] to
study interfaces with codimension > 1. In [28], the incompressible Euler equations were studied. In [33,34], a
level set formulation was used to solve problems arising in mathematical finance, where high-dimensional is-
sues are routinely encountered. Even for codimension-1 problems in 3D, there is still a desire to find imple-
mentable adaptive methods to resolve fine details, such as in the segmentation of the human brain, or
other applications involving highly curved surfaces such as Wulff crystals. See [24,32] for a wide range of phys-
ical problems to which level set methods are applied.

Since the introduction of level set methods for interface tracking [22], there has been work done in an at-
tempt to reduce the component of the computational portion of the method subject to the most criticism: the
necessity of extra dimensions. Within a few years following [22] narrow band methods were proposed that re-
duced the computational complexity by resolving the level set function only near the interface being tracked
[1,39,26]. These methods were able to use the well established, convergent, finite difference schemes available
to uniform grids.

However, these narrow band methods did not reduce the storage requirements, limiting them to the same
resolutions which uniform grids were restricted. Following this, tree-based methods were introduced, allowing
for adaptivity of the mesh near the interface, while not sacrificing too much complexity [35,20,10,18]. The tree
data structure used in these methods was well understood by the computer science community, and thus data
storage and retrieval were able to be carried out in an efficient manner. However, the non-uniformity of the
mesh required new schemes to be developed for the PDEs to be solved. In some cases semi-Lagrangian CIR [9]
schemes were used for time-dependent level set equations. These schemes have some drawbacks, though.
Firstly, they are only provably convergent for hyperbolic problems, and many level set PDEs involve mean
curvature or are otherwise parabolic in nature. Secondly, they require a backtracking along characteristics
and an interpolation at an arbitrary point within the domain. This interpolation is a delicate process that re-
quires the division of the domain into simplices, which can become complicated in higher dimensions [20]. In
[18], CIR was used for advection of values stored at cell corners, and cell centered data was stored for the
pressure equation in Navier–Stokes, where a one-point (constant within each cell) interpolation technique
was used to avoid apparent complexities, and to preserve the symmetry of the discretization. In addition,
for the eikonal equation used to maintain the signed distance property of the level set function, [18] used some
special treatment at T-junctions in the context of the fast marching spirit [38].

There have been other local level set methods [19,36,4,13,3] proposed which range from variants of AMR to
using tubes of uniformly spaced grid points near the interface. Some of the methods approach the complexity
of [26], eliminating the need to store the unused grid points away from the interface of interest. They also allow
for the standard finite difference schemes to be used as the grid is uniform near the interface. However, with
these gains comes additional complexity in implementation, and it should be noted that the successive
improvements and acceptance of the tree-based methods in various applications are testaments to their facility
and usefulness.

In this paper, we introduce a tree-based method that retains the advantages of the previous tree-based algo-
rithms, such as having a well studied and understood data structure, while avoiding the drawbacks of having
inconsistent schemes requiring n-dimensional simplices and interpolation. Thus we are able to use the standard
numerical Hamiltonians derived for uniform grids (modified slightly) which result in consistent, monotone,
convergent numerical methods. Combined with the fast sweeping strategy [41,37,15,29], the resulting tree-
based methods are highly efficient and accurate.

The paper consists of a brief overview of the tree data structure, followed by a discussion of the numerical
schemes for static H–J equations, and then time-dependent H–J equations. Finally, numerical results are given
for codimension-1, codimension-2, and codimension-n problems.

2. Tree data structure

In this section, we describe the tree data structure used. We use a generalized binary tree (e.g., quadtree in
2D, octree in 3D, etc.) data structure, details of which can be found in numerous computer science texts
[17,31,12]. We describe the portions of the implementation that are specific to our problem of solving a
PDE in a bounded spatial domain.
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We assume a computational domain, X = [0,1]n. At the kth level of the tree, each node, c, represents a
hypercube cell with sides of length dxc = 1/2k, and center xc. We assume that the level set function value, /
, is stored at the centers of mass of the nodes at the finest level of the tree, also known as the leaves. An alter-
nate storage location could be the vertices of the cells. We choose the centers because of the simplicity of
implementation (e.g., there are no storage points belonging to multiple cells), and the fact that local interpo-
lations can be done in a dimension independent way.

When refinement of a cell is done, the cell is split into 2n subcells with side lengths 1/2k+1. We do not allow
any cells with side length ratio >2 or <0.5 to be neighbors. This restriction results in what is known as a bal-
anced tree, see [21] for some results concerning tree balancing. This balancing can be obtained by following the
criterion of refining any cell whose distance to the interface, C, is less than a constant times its edge length [35].
In practice, if we are using a single level set function /, e.g. for codimension-1 problems, if / is a signed distance
function then we can set q P ð1þ ffiffiffi

n
p

=2Þ and refine if |/(xc)| < qdxc. For problems where the intersection of
multiple level set functions, {/j}, represents C, where the level sets of the /j are mutually orthogonal and each
/j is a distance function measured along the level sets of the other /i 6¼j, we can compare k/kl2 to qdxc.

3. Static H–J equations

Here we introduce a fast sweeping implementation for solving certain static Hamilton–Jacobi equations
such as the eikonal equation |$/| = f or in general H($/) = f [37,40,41,16]. These types of equations are com-
monly used when reinitializing the level set function to be a signed distance function during a dynamic evo-
lution, or in other weighted distance calculations that arise in numerous physical problems.

In order to avoid n-triangulations that can lead to very complicated local Hamiltonian solvers [29], we fol-
low the same ideology that many other adaptive and tree-based methods follow: study a small number of local
node configurations of the grid, and then appropriately scale them so that the various operations of interpo-
lation, refinement, etc. can be applied in the same way anywhere in the domain.

3.1. Local numerical Hamiltonian solver

The first part of the fast sweeping method is the local numerical Hamiltonian solver. We will design mono-
tone, consistent solvers that do not require n-triangulations.

3.1.1. Upwind Hamiltonian

The upwind Hamiltonians approximating the eikonal equation |$u| = f with boundary data given on C are
based on using the Godunov Hamiltonian (GH):
Ĥ Dx1
�uðyÞ;Dx1

þuðyÞ; . . . ;Dxn
�uðyÞ;Dxn

þuðyÞ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

max Dxi
�uðyÞ

� �þ
; Dxi

þuðyÞ
� ��n o2

s
; ð1Þ
where y is a grid point at which we wish to update the numerical solution u, or using the Osher–Sethian Ham-
iltonian (OSH):
Ĥ Dx1
�uðyÞ;Dx1

þuðyÞ; . . . ;Dxn
�uðyÞ;Dxn

þuðyÞ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Dxi
�uðyÞ

� �þh i2
þ Dxi

þuðyÞ
� ��� �2s

. ð2Þ
Godunov numerical Hamiltonians were evaluated in [2,25]. For nonlinear H–J equations whose Hamiltonians
differ significantly from that of the eikonal equation the resulting expressions become quite complicated,
involving many ‘‘if’’ statements.

When the grid is uniform along the ith axis, the standard 2-point finite difference can be used for, e.g.
Dxi

�uðyÞ, by taking uðyÞ�uðy�deiÞ
d , where d is the local spacing between nodes in the ith direction.

Admittedly, the grid is not uniform everywhere, so when we try to compute quantities such as Dxi
�uðyÞ we

will not have a uniform definition throughout all of the domain. However, because the grid refinement is done
predictably (by this we mean that there are only a small number of local configurations of the grid, up to scal-
ing), we can quickly find the value at an offset point in the �ei direction, u(y � dei), needed in Dxi

�uðyÞ.
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We assume that the tree is constructed so that in each cell S, uS is defined at the center, yS, of S, and each
cell is an n-cube with equal side lengths given by dS. This uniform restriction can be relaxed, but for exposi-
tional purposes it will not be. Also, we note the restriction that the ratio of the d of neighboring cells is either 2,
1 or 1/2.

In any dimension, n, there are only three possible local configurations that need examining, when attempt-
ing to find Dxi

�uðyÞ:

1. The cell B that is adjacent to cell A ’ y in the �ei direction is exactly the same size as A, thus u(y � dei) = uB,
d = dA = dB. This is standard 2-point finite differencing.

2. The cell B that is adjacent to cell A ’ y in the �ei direction is smaller than A, i.e. dB = dA/2. In this case, we
have a situation illustrated in Fig. 1 in 2D. In n dimensions, we take u(y � dei) = {the average of the 2n

adjacent neighboring cells whose faces with outward normal ei are touching the face of A that has outward
normal �ei}. As the centers of all these points are coplanar, this is just the linearly interpolated value at the
point P that is the intersection of the plane containing these neighboring cell centers and the ray given in
parametric form by r(s) = y � sei, s P 0.

3. The cell B that is adjacent to cell A ’ y in the �ei direction is larger than A, i.e. dB = 2dA. In this case, yB
does not lie along r(s). However, because of the structure of the grid points in the tree, there is a neighbor-
ing cell, C, of A such that yByC intersects r(s). This cell C is the diagonal neighbor of A in the direction
ðsgnðyA;1 � yB;1Þ; . . . ; sgnðyA;i�1 � yB;i�1Þ;�sgnðyA;i � yB;iÞ; sgnðyA;iþ1 � yB;iþ1Þ; . . . ; sgnðyA;n � yB;nÞÞ;
where sgn is the signum function.
In this case, there are two possibilities for C: Case 1. C is either the same size as A; Case 2. C is the same

size as B. See Figs. 2 and 3 for diagrams of these cases in 2D and 3D.
The interpolated value at the intersection point P is
uðPÞ ¼ 1

jyByCj
ðuðyBÞjyBP j þ uðyCÞjyCP jÞ ¼ uðyBÞwB þ uðyCÞwC. ð3Þ
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P

Fig. 1. Case where neighboring cells are smaller than A.
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Fig. 2. Cases where neighboring cell B is larger than A in 2D. Left: Case 1, right: Case 2.
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Fig. 3. Cases where neighboring cell B is larger than A in 3D. Left: Case 1. Right: Case 2.
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Also, we have d = wB|yB,i � yA,i| + wC|yC,i � yA,i|. In Case 1, we find wB = 2/3, wC = 1/3, and in Case 2 we
find wB = 3/4, wC = 1/4. These are the weights for any dimension n, which is very appealing in that we do
not have to resort to complicated n-triangulations.

We define di,� = d in this particular case because yB,i < yA,i. In the case, where yB,i > yA,i, di,+ is defined as
the distance between P and A.

Once one has found all the Dxi
�uðyÞ; 8i one can solve the quadratic equation arising from the local numer-

ical Hamiltonian for u(y), and update the solution with this found value. Because the di,± in each particular
Dxi

�uðyÞ could be different, the Godunov solver introduced in [41] with its simple min and if statements is not
applicable. However, the procedure for finding the correct solution of
ðx� a1Þþ

h1

� �2
þ � � � þ ðx� amÞþ

hm

� �2
¼ f ð4Þ
can be used. We present the case for OSH, as GH is more complicated (but feasible).

1. Let the aj, j = 1, . . ., 2n be the points from the finite differences
fajg ¼ fuðyA � eidi;�Þg; i ¼ 1; . . . ; n;
ordered from least to greatest, and the hj be the corresponding offset distances from yA (the hj will not be in
any particular order). We set a2n+1 = 1.

2. Set m = 1;
3. Solve

Pm
j¼1½

ðx�ajÞþ
hj

�2 ¼ f to get a solution x̂.
4. Check to see if x̂ 6 amþ1. If so, then we are done and we set uðyÞ ¼ x̂. If not, then we set m! m + 1, and go

to step 3, unless m = 2n, then we are done.

Note. The implementation of this solution algorithm is independent of n, except for the number of terms in
the sum.

The algorithm for GH is more complicated as GH includes max functions that OSH does not. The only
drawback of OSH is its slightly larger error near sonic shocks, but if we refine the grid such that it is locally
uniform at sonic shocks, then GH could be used there (and anywhere else on the grid that is locally uniform),
as it can be solved by the method presented in [41].

Note that monotonicity is satisfied because of the positive weights, w, multiplying the u(z), z 6¼ y in each
finite difference. Also, because of the linear interpolations used, the scheme is consistent. Thus, the scheme
is convergent.
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3.1.2. Lax–Friedrichs Hamiltonian

Here, we present a Lax–Friedrichs Hamiltonian (LFH) which does not require nonlinear inversions when it
is being solved. This extends its applicability to a wide range problems including those with non-convex Ham-
iltonians. This is a generalization of the Hamiltonian presented in [15].

The numerical Hamiltonian for H($u) = f with boundary data given on C is as follows:
Ĥ Dx1
�uðyÞ;Dx1

þuðyÞ; . . . ;Dxn
�uðyÞ;Dxn

þuðyÞ
� �
¼ H w�

1 D
x1
�uðyÞ þ wþ

1 D
x1
þuðyÞ; . . . ;w�

n D
xn
�uðyÞ þ wþ

n D
xn
þuðyÞ

� �
�
Xn
i¼1

ri Dxi
þuðyÞ � Dxi

�uðyÞ
� �

; ð5Þ
where
wþ
i ¼ di;þ

di;þ þ di;�
; w�

i ¼ di;�
di;þ þ di;�

. ð6Þ
Note that wþ
i þ w�

i ¼ 1 so the scheme is consistent.
To determine the size of ri, we note that monotonicity requires that
oĤ=opþi 6 0; oĤ=op�i P 0.
This leads to the requirement
ri P jHpi jmaxðwþ
i ;w

�
i Þ.
Within the fast sweeping framework, in order to advance the solution a single iteration, one writes (5) in the
form
Ĥ ¼ LðuðX n yÞÞ þ cuðyÞ;
and then the advancement can be written as
unþ1ðyÞ ¼ f ðyÞ � LðunðX n yÞÞ
c

.

The weights w are composed precisely so that the coefficient c can be calculated in a linear way purely from the
artificial diffusion term.

Implementation of this LFH is simpler than GH or OSH because it does not require the inversion of H.
Thus it does not require any if statements and is thus faster per iteration. However, it does require more iter-
ations to converge.

3.2. Sweeping directions

The second part of the fast sweeping method is to determine the directions of the sweep. In [29], a strategy
using reference points was introduced, with an initial sequential ordering of the nodes with respect to their
distances from these points. This could work for our method, but the built-in structure of the tree allows
for another method of sweeping.

The tree specific sweeping method is as follows:

1. Each ordering of sweeping is defined by an ordering of the vertices of the n-cube. In n-dimensions, there are
2n possible sweeps that are found by taking all combinations of sweeping from low to high, or high to low in
each dimension. So in 2D if the vertices of a square are as in Fig. 4 the possible orderings are
fA;B;C;Dg;
fD;C;B;Ag;
fC;D;A;Bg;
fB;A;D;Cg.



A

C D

B

Fig. 4. Sample child ordering in 2D. The outer perimeter is the boundary of the parent cell. Each lettered interior square corresponds to a
child pointer to one of the 4 smaller squares.
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2. For each of the orderings in step 1, call a preorder traversal [17] of the grid starting at the root node, based
on a particular ordering of the children given from the previous step. When a leaf is reached, update the
solution using the local Hamiltonian solver.

This means that if we choose the child ordering {A,B,C,D} then we call a preorder traversal with node A as
the starting node, followed by a preorder traversal with node B as the starting node, etc. Once the traversal has
gotten to the leaf of the tree (i.e. a node with no children) we update u. This recursive type of tree visitation is
standard and can be found in any thorough book on computer algorithms and binary trees [17,31].

Fig. 5 shows a sample ordering of the nodes when all nodes are at a uniform depth in the tree. In this par-
ticular case, the sweeping algorithm will give exactly the same result as the standard sweep ordering [41] for a
uniform grid of this size with a fixed node at the origin with u(0,0) = 0. This is because for each node visited in
this sweep, all nodes to the south and west of it have already been updated in the sweep.

However, when the grid is not uniform we have found that extra sweeps are needed as Dxi
�uðyÞ may depend

on nodes that are farther north or east than y, as is the case when the stencil choices in Fig. 2 would be used.
We make some comments on this. Firstly, since the sweeping strategy accesses all nodes systematically, the
tree-based methods will converge eventually, no matter how many sweeps it needs. Secondly, since there
are many more possible information flowing directions on a non-uniform grid as demonstrated in [29], and
the tree specific sweeping method designed here will only allow a finite number of such information flowing
directions to be treated simultaneously, it is reasonable for the tree specific methods to use extra sweeps to
converge. Thirdly, it is possible to design optimal tree specific sweeping methods by reordering the nodes
so that all the possible information flowing directions can be covered with a finite number of tree-based
orderings.
Fig. 5. Nodes that are leaves of a tree on a uniform 16 · 16 grid, and the path connecting sequential nodes in the sweep from bottom left
to top right.
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3.3. Solution procedure

The complete solution procedure is as follows:

1. Assume that we are given a grid upon which the solution / will be solved. Find all points within a small
O(dx) distance of C and find an approximate solution /n at these points. This can be done by interpolating
the known boundary C. Set all other points to a large value, e.g. /n = 1010, which is larger than the exact
solution on the grid.

2. Sweep through the domain {xj} using a preorder traversal specified by one of the 2n orderings of child
pointers, solving for /*(xj) at each grid point using Gauss–Siedel iteration by inverting GH, OSH or
LFH. Take /n+1 = min(/*(xj),/

n(xj)).
3. Check if i/n � /n+1i1 < �, where � is a fixed tolerance to indicate convergence has been reached. If conver-

gence has not been reached go to step 2.

4. Time-dependent level set equations

This section concerns solving time-dependent H–J equations as well as higher order parabolic equations
such as mean curvature motion that arise frequently in level set problems. We will introduce the way in which:
(1) the numerical Hamiltonian is constructed and (2) new values are chosen on the grid in a monotone way
after a refinement/coarsening has taken place.
4.1. Numerical Hamiltonian

Examining the constructions for the functions at the points y ± dei from the section on static H–J
equations we can see that 2-point upwind differences can be calculated easily for any fine grid point y. For
example,
Dxi
�uðyÞ ¼

uðyÞ � ðuðyBÞwB þ uðyCÞwCÞ
d

; ð7Þ
using the notation from (3). Then standard monotone numerical Hamiltonians such as GH, OSH and LFH
can be used with Runge–Kutta (R–K) timestepping with the CFL condition determined by the finest cell size
being used. For higher order WENO type reconstructions, a bit more work would be involved, but they are
certainly possible to construct and we would still avoid the need to use high dimensional triangulations. Cen-
tral differences and higher order derivatives can be calculated by using the weightings, w, that were introduced
in Section 3.1.2 for Lax–Friedrichs Hamiltonians after calculating the first-order upwind differences at the grid
points.
4.2. Interpolation after refinement/coarsening

We would like the interpolation processes to be consistent and monotone as well so that our entire scheme
including adaptation is stable. Also, we would like to avoid having to work with any high dimensional sim-
plices. It turns out that as was the case with the upwind differencing, we have only a few different cases that can
be applied to all dimensions in the same way.
4.2.1. Coarsening

After a coarsening the value at the center of the node of size 1/2k that just became a leaf is set to be the
average of the 2n function values at the nodes with side lengths 1/2k+1 that were its children. Coarsening is
done if all the siblings of a cell c are at the same level as c and have not been marked for refinement, and
if the resulting averaged coarsened value, /coarsened, does not violate the refinement condition (i.e. we do
not have |/coarsened| < 2qdxc).
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Fig. 6. Possible refinement cases in 2D. (A) Node where interpolation is evaluated. (B) Node at center of coarse cell that was divided. (C)
Diagonal neighbor used in interpolation. Left: Case 1. Right: Case 2.
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4.2.2. Refinement

Examining Fig. 6, we can see that after refinement we can use 2-point linear interpolation to find the new
value at point A with weights: in case 1, wB = 2/3, wC = 1/3; and in case 2, wB = 3/4, wC = 1/4. These are the
weights for any dimension n, where the diagonal neighbor, C, is the adjacent cell in the direction
ðsgnðyA;1 � yB;1Þ; . . . ; sgnðyA;n � yB;nÞÞ.

Both the coarsening and refinement interpolations are monotone and consistent for linear functions /.

4.3. Solution procedure

The complete solution procedure for the time-dependent problem is as follows:

1. Assume that we are given a grid upon which the solution / will be determined, and we are given initial
conditions /n. If /n is not a signed distance function then use the fast sweeping method with OSH or
GH to reinitialize the solution.

2. For each time step, for every grid point, advance the time-dependent H–J equation forward one time step.
3. Reinitialize the solution using fast sweeping.
4. Refine the solution where necessary.
5. Coarsen the solution where necessary.
6. Go to step 2.

It should be noted that the reinitialization/refinement/coarsening procedures do not need to be carried out
every time step, but they should be done at least once every few time steps.

5. Numerical results

In this section, numerical results are presented for both static and time-dependent problems for
codimension-1, codimension-2, and codimension-n problems. We refrain from studying the reduced memory
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requirements that the tree method gains over uniform discretizations as these are well presented in [20]. There
it is shown that for interface evolutions with codimension > 1 one finds storage requirements increasing at a
rate proportional to the dimension of the interface, not the dimension of the computational domain (i.e. for a
dimension d interface the storage increases by a factor of approximately 2d when the globally minimal dx is
halved, no matter how large the codimension of the interface is). Time reduction is also indicated in [20],
but the reduction is less significant (increasing by approximately 22d when the minimal dx is halved) than
for memory because of the added complexity of accessing neighboring cells, as well as the extra time needed
in adapting the mesh. We focus on presenting convergence rate estimates and show error results in dimensions
up to n = 7. For the time-dependent problems, we use forward Euler time advancement. The n-dimensional
midpoint quadrature rule is used to calculate the Lp errors throughout. For the time-dependent problems,
we set the refinement radius q as described in Section 2 to be q ¼ 1:5

ffiffiffi
n

p
.

In Table 1, we show errors and node counts for a codimension-n problem of solving the eikonal equation
Table
Errors

Finest

1/256
1/256
1/256
1/256
1/128
1/16
jr/j ¼ 1; ð8Þ

with a boundary point at xb = (0.5,0.5, . . . ,0.5) with value u(xb) = 0. In this table, the number of leaves rep-
resents the number of points where the function value is stored, while the number of uniform points represents
what this number would be if a uniform grid with the finest dx listed was used. We note that the adaptivity for
this problem is based on knowledge of the distance to the fixed node at the center of the domain, which is
essentially knowledge of the solution to (8). Thus a better adaptivity routine needs to be formulated, which
will be the subject of future research.

We use the preorder traversal fast sweeping method with the OSH numerical Hamiltonian. The error is
measured on the finest 3 levels of leaves, except in 7D, where it is measured on the finest 2 levels of leaves.

An interesting point to note is that when a stopping criterion is used such as stopping when the change in
the error is <10�12 we find that the number of sweeps needed to achieve this criterion does not increase linearly
in n, but rather stagnates. For example in 5D, we need only 30 sweeps, in 6D we need 35, and in 7D only 32.
Perhaps this is some effect particular to our specific example, but perhaps not.

In Table 2, we show errors and convergence rate estimates for the time-dependent H–J equation
/t þ jr/j ¼ 0; ð9Þ

with initial condition given by a hypersphere of radius 0.2 centered at the point xb = (0.5,0.5, . . . ,0.5). The
normal motion moves the hypersphere inwards towards xb with constant normal velocity = 1. The error is
measured by determining the volume of the hypersphere at the final time, T, (which is taken to be near
0.1) and then measuring the error in the implied radius versus the exact radius = 0.2 � T. This is basically
an L1 error estimate.

In Table 3, we show errors and convergence rate estimates for time-dependent motion by mean curvature
/t þ jjr/j ¼ 0; ð10Þ

where
j � �
Xn
i¼1

/xixi

Xn
j¼1
j 6¼i

/2
xj

0
BB@

1
CCA�

Xn
i¼1

Xn
j¼1
j 6¼i

/xixj/xi/xj

2
664

3
775
,

jr/j3
1
for eikonal equation

dx L1 error L1 error N leaves of tree N uniform points n

6.046E � 05 7.193E � 03 304 65,536 2
1.293E � 05 1.126E � 02 2472 16,777,216 3
3.056E � 06 1.615E � 02 26,896 4.295E + 09 4
7.209E � 07 2.027E � 02 309,536 1.100E + 12 5
2.018E � 05 4.802E � 02 2,822,464 4.398E + 12 6
1.607E � 01 2.307E � 01 9,379,840 2.684E + 08 7



Table 2
Convergence rate estimate for constant motion in normal direction

Finest dx Error Rate Dimension

1/32 9.605E � 03 – 3
1/64 4.376E � 03 1.134 3
1/128 2.110E � 03 1.052 3
1/256 1.263E � 03 0.741 3
1/32 8.201E � 03 – 4
1/64 4.147E � 03 0.984 4
1/128 2.138E � 03 0.956 4
1/16 3.220E � 02 – 5
1/32 1.112E � 02 1.535 5
1/16 1.743E � 02 – 6

Table 3
Convergence rate estimate for mean curvature motion

Finest dx Error Rate Dimension

1/32 1.821E � 03 – 2
1/64 6.011E � 04 1.599 2
1/128 1.581E � 04 1.927 2
1/256 6.457E � 06 4.614 2
1/32 1.786E � 03 – 3
1/64 3.217E � 04 2.473 3
1/128 1.951E � 05 4.044 3
1/16 2.114E � 02 – 4
1/32 1.482E � 02 0.513 4
1/64 7.155E � 03 1.051 4
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is the scaled mean curvature of the set C = {x |/(x)} = 0. We initialize C as a hypersphere of radius 0.2 cen-
tered at the point xb = (0.5,0.5, . . . ,0.5). The first partial derivatives of j are found using centered differences
as suggested above with the weights w indicated in the section on the LFH, and the second derivatives are
found using 3-point centered stencils.

The mean curvature motion moves the hypersphere inwards towards xb with normal velocity = (n � 1)/r(t),
where r(t) is the radius of the hypersphere at time t. The exact solution is a hypersphere with

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:22 � 2ðn� 1Þt

q
, centered at xb. The final time varies from dimension to dimension but we take

O(1/dxglobal min) number of time steps for the coarsest grid in each dimension�s convergence study. The error
is measured in the same way as it was for the normal motion case.

In Table 4, we show error convergence rates for a codimension-2 problem of advection of a closed curve in
3D [5]. We advance
ð/jÞt þ V � r/j ¼ 0; V ¼ ð1; 1; 1Þ; ð11Þ
for j = 1,2, where the initial condition is given by a circle of radius 0.2 centered at xb = (0.25,0.25,0.25). This
circle is defined by the intersection of the 0 level sets of 2 level set functions, /1, /2. The final time is
T = 0.3125. The exact solution is a circle centered at (0.5625,0.5625,0.5625) with radius = 0.2. For this prob-
lem, it is necessary to set the /j to be orthogonal to each other every few time steps. This is done in a fast
sweeping way as presented in [6]. The error is measured at t = T by sampling the circle that is the exact solu-

tion with 500 points, {y}, and estimating the L1 error of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/1ðyÞ

2 þ /2ðyÞ
2

q
on the circle.

Here, we include a short discussion of the gain in time and memory for the codimension-2 problem. In
Fig. 7, we show the cell centers used when t = 0 and the finest dx = 1/128, along with the circle that is being
tracked. For this figure, the total number of nodes used in the entire tree is N = 34,929, while the total number
of leaves is L = 30,563. Thus the number of pointers in the tree is 9N � 8L = 69,857. The total number of
nodes for a uniform grid would be Nunif = (27)3 = 2,097,152. For a tree storing only the function values



Table 4
Convergence rate estimate for motion of a closed curve in 3D

Finest dx Error Rate

1/16 4.520E � 02 –
1/32 2.544E � 02 0.829
1/64 1.372E � 02 0.891
1/128 7.261E � 03 0.918
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Fig. 7. Cell centers (blue) and codimension-2 circular interface (red) at t = 0 when the finest dx = 1/128. (For interpretation of the
references in color in this figure legend, the reader is referred to the web version of this article.)

T.C. Cecil et al. / Journal of Computational Physics 213 (2006) 458–473 469
and pointers to child and parent nodes the memory reduction is apparent, and even if physical locations were
to be stored at the nodes there would still be a significant reduction. In terms of time if we assume that the
amount of time needed for accessing a neighbor on a uniform grid is K, then we can bound the time needed
for accessing a neighbor in the tree by Klog2nNunif (although most neighbor accesses are done in an amount of
time closer to K because of the moving pointer technique [20]). Thus the time needed to get a neighbor at every
node (proportional to the time needed to advance one timestep) would be less than 7KL � 2K · 105 for the
tree, versus approximately NunifK � 2K · 106 for the uniform grid. The overall time would need to include
the time needed to refine the grid, which should be similar to the that needed by the advancement step, thus
yielding a faster method by at least a factor of 5 if adaptation is done every time step.

In Fig. 8, we show contour plots of Wulff shapes [27] arising from solving
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
þ 2jrj

� 	
1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ3=2 � ð3p2q� q3Þ

2ðp2 þ q2Þ3=2

s !
¼ 1; ð12Þ
where (p,q, r) = (/x,/y,/z). This equation is equivalent to solving



Fig. 8. Wulff crystal with surface tension c($//|$/|) = (1 + 2|sinh1|)(1 + |sin(1.5(h2 + 0.5p))|). Contours on top, lower left, lower right at
/ = 0.08, 0.14, 0.2.
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c
r/
jr/j


 �
jr/j ¼ ð1þ 2j sin h1jÞð1þ j sinð1:5ðh2 þ 0:5pÞÞjÞjr/j ¼ 1;
where c is known as the surface tension inmaterials science, and is a function of the spherical coordinates (h1, h2).
For this and the next example, we use fast sweepingwithLFH.The diffusion terms satisfyr = (9/4,9/4,27/8).We
fix a point in the center of the domain with the value 0. The grid is adapted similarly to how it would be for a usual
level set evolution, but with the coarsest resolution being dx = 1/64, and the finest resolution, dx = 1/1024. Neu-
mannBCs/g = 0 are used. The total number of iterations needed for themaximum change in the solution in sub-
sequent iterations to be reduced to <10�6 in this example is 836. For visualization purposes, the final solution is
interpolated to a uniform 643 grid for this and the next two figures.

In Fig. 9, we show contour plots of Wulff shapes arising from solving
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
j
ffiffiffi
3

p
jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
j

q
 �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ5=2 � ð�5p4qþ 10p2q3 � q5Þ

2ðp2 þ q2Þ5=2

s !
¼ 1.

ð13Þ

This equation is equivalent to solving
c
r/
jr/j


 �
jr/j ¼ ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðjh1j � 0:5pÞ

p
Þð1þ j sinð2:5ðh2 þ 0:5pÞÞjÞjr/j ¼ 1.
The diffusion terms satisfy r = (7/4,7/4,2). The total number of iterations needed for the maximum change in
the solution in subsequent iterations to be reduced to <10�6 is 429.

For these last 2 examples, the adaptation strategy is based on each point�s l2 distance to the fixed point,
which is not the optimal refinement strategy for minimizing the global error in most norms. Thus there re-
mains work to do in determining better adaptation strategies. However, the point of these examples is to show
the convergence of the fast sweeping method using the LFH in a number of sweeps comparable to the number
found in [15] for the same examples. In [15] 2032 sweeps are needed for Fig. 8, and 432 sweeps are needed for
Fig. 9. See [15] for more details on these Wulff crystal problems.



Fig. 9. Wulff crystal with surface tension cð r/
jr/jÞ ¼ ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðjh1j � 0:5pÞ

p
Þð1þ j sinð2:5ðh2 þ 0:5pÞÞjÞ. Contours on top, lower left, lower

right at / = 0.08, 0.14, 0.2.
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In Fig. 10, we show the evolution of a crystal whose asymptote is a Wulff shape that is a cube. The PDE
being solved is
Fig
/t þ j/xj þ j/y j þ j/zj ¼ 0; ð14Þ
. 10. Wulff shape evolution of /t + |/x| + |/y| + |/z| = 0 at times t = 0 (top), t = 0.098 (lower left), and t = 0.195 (lower right).
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with initial conditions of a sphere with radius = 0.2. This is an example where the monotone Hamiltonians
(OSH is used here) have an advantage over the simple characteristic following CIR scheme.

6. Conclusion

We have introduced a tree-based adaptive method for solving level set equations which has the advantage
of being simplex free. Its implementation changes very little from dimension to dimension, allowing use by
even the most hyperspatially challenged practitioner. It allows for well studied monotone numerical Hamilto-
nians to be used, avoiding the complications that often arise when constructing monotone numerical Hamil-
tonians on unstructured grids. The method has been applied to codimension-m, 1 6 m 6 n, linear and
nonlinear, first- and second-order, static and time-dependent H–J problems in up to 7D.

Future work will include improving the adaptive procedure for static problems, based on user defined glo-
bal errors. Also, WENO type methods will be explored to increase the accuracy. Although we do not show
numerical examples here, the method could be extended to higher (>2) order nonlinear PDEs such as Will-
more flows [11]. Finally, it should be noted that although the methods presented are done so for H–J prob-
lems, they could be applied to other problems requiring adaptive meshes and function interpolation and
reconstruction.
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